Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38.778
Filtrar
1.
BMC Womens Health ; 23(1): 572, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932705

RESUMO

BACKGROUND: Abnormal vaginal discharge is a common complaint among women of reproductive age, affecting about one- third of all women. In resource-limited settings where access to laboratory services is limited, treatment is usually syndromic. This approach may result in ineffective treatment, with high recurrence rates and a potential of developing antibiotic resistance. This study aimed to determine the bacterial isolates and antibiotic susceptibility among women with an abnormal vaginal discharge attending the gynecology clinic at a tertiary hospital in Southwestern Uganda. METHODS: We conducted a hospital based cross-sectional study among 361 women aged 15-49 years, presenting with abnormal vaginal discharge at the gynecology clinic of Mbarara Regional Referral Hospital from December 2020 to June 2021. Demographic characteristics were collected using a structured questionnaire. We collected cervical and vaginal sterile swabs and subjected them to wet preparation and gram stain. The specimens were cultured for bacterial isolates. Susceptibility testing was performed on samples with bacterial isolates using the Kirby-Bauer disc diffusion method, on the commonly prescribed antibiotics in this setting. We summarized and described the bacterial isolates and antibiotic susceptibility patterns as frequencies and percentages. RESULTS: We enrolled 361 women with abnormal vaginal discharge. Bacteria were isolated in 29.6% (107/361) of the women, and the commonest isolates included; Staphylococcus aureus 48.6% (52/107), Klebsiella pneumoniae 29.9% (32/107) and Enterococcus faecalis 15% (16/107). Yeast cells were found in 17.7% (64/361) of the women with abnormal vaginal discharge. Cefuroxime (90.7%) and Ciprofloxacin (81.3%) had a high level of sensitivity while high levels of resistance were observed for Doxycycline (86.0%) and Azithromycin (67.0%). CONCLUSION: The common bacterial isolates were Staphylococcus aureus, Klebsiella pneumoniae and Enterococcus faecalis. The isolated bacteria were most sensitive to Cefuroxime and Ciprofloxacin but resistant to Doxycycline and Azithromycin. There is need for routine culture and susceptibility testing of women with abnormal vaginal discharge so as to guide treatment, minimize inappropriate antibiotic use and consequently reduce antibiotic resistance.


Assuntos
Antibacterianos , Bactérias , Infecções Bacterianas , Descarga Vaginal , Feminino , Humanos , Antibacterianos/uso terapêutico , Estudos Transversais , Testes de Sensibilidade Microbiana , Centros de Atenção Terciária , Uganda , Descarga Vaginal/tratamento farmacológico , Descarga Vaginal/microbiologia , Resistência Microbiana a Medicamentos , Infecções Bacterianas/tratamento farmacológico , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação
3.
Front Cell Infect Microbiol ; 13: 1181633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637457

RESUMO

With the widespread use of macrolide antibiotics in China, common pathogens causing children's infections, such as Streptococcus pneumoniae, Streptococcus (including Group A streptococcus, Group B streptococcus), Staphylococcus aureus, Bordetella pertussis, and Mycoplasma pneumoniae, have shown varying degrees of drug resistance. In order to provide such problem and related evidence for rational use of antibiotics in clinic, we reviewed the drug resistance of common bacteria to macrolides in children recent 20 years.


Assuntos
Antibacterianos , Bactérias , Infecções Bacterianas , Farmacorresistência Bacteriana , Macrolídeos , Macrolídeos/farmacologia , Macrolídeos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Humanos , Criança , China
4.
ACS Biomater Sci Eng ; 9(9): 5332-5346, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37642176

RESUMO

Periodontitis is an inflammatory disease characterized by tooth loss and alveolar bone resorption. Bacteria are the original cause of periodontitis, and excess reactive oxygen species (ROS) encourage and intensify inflammation. In this study, a mussel-inspired and MnO2 NPs-reinforced adhesive hydrogel capable of alleviating periodontitis with improved antibacterial and antioxidant abilities was developed. The hydrogel was created by combining polyvinyl alcohol (PVA), 3,4-dihydroxy-d-phenylalanine (DOPA), and MnO2 nanoparticles (NPs) (named PDMO hydrogel). The hydrogel was demonstrated to be able to scavenge various free radicals (including total ROS─O2•- and OH•) and relieve the hypoxia in an inflammatory microenvironment by scavenging excess ROS and generating O2 due to its superoxide dismutase (SOD)/catalase (CAT)-like activity. Besides, under 808 nm near-infrared (NIR) light, the photothermal performance of the PDMO hydrogel displayed favorable antibacterial and antibiofilm effects toward Escherichia coli, Staphylococcus aureus, and Porphyromonas gingivalis (up to nearly 100% antibacterial rate). Furthermore, the PDMO hydrogel exhibited favorable therapeutic efficacy in alleviating gingivitis in Sprague-Dawley rats, even comparable to or better than the commercial PERIO. In addition, in the periodontitis models, the PDMO2 group showed the height of the residual alveolar bone and the smallest shadow area of low density among other groups, indicating the positive role of the PDMO2 hydrogel in bone regeneration. Finally, the biosafety of the PDMO hydrogel was comprehensively investigated, and the hydrogel was demonstrated to have good biocompatibility. Therefore, the developed PDMO hydrogel provided an effective solution to resolve biofilm recolonization and oxidative stress in periodontitis and could be a superior candidate for local drug delivery system in the clinical management of periodontitis with great potential for future clinical translation.


Assuntos
Hidrogéis , Periodontite , Periodontite/tratamento farmacológico , Hidrogéis/administração & dosagem , Hidrogéis/síntese química , Hidrogéis/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Animais , Ratos , Ratos Sprague-Dawley , Regeneração Óssea/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
5.
World J Microbiol Biotechnol ; 39(10): 282, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37589866

RESUMO

Bloodstream infections are a growing public health concern due to emerging pathogens and increasing antimicrobial resistance. Rapid antibiotic susceptibility testing (AST) is urgently needed for timely and optimized choice of antibiotics, but current methods require days to obtain results. Here, we present a general AST protocol based on surface-enhanced Raman scattering (SERS-AST) for bacteremia caused by eight clinically relevant Gram-positive and Gram-negative pathogens treated with seven commonly administered antibiotics. Our results show that the SERS-AST protocol achieves a high level of agreement (96% for Gram-positive and 97% for Gram-negative bacteria) with the widely deployed VITEK 2 diagnostic system. The protocol requires only five hours to complete per blood-culture sample, making it a rapid and effective alternative to conventional methods. Our findings provide a solid foundation for the SERS-AST protocol as a promising approach to optimize the choice of antibiotics for specific bacteremia patients. This novel protocol has the potential to improve patient outcomes and reduce the spread of antibiotic resistance.


Assuntos
Bacteriemia , Técnicas Bacteriológicas , Farmacorresistência Bacteriana , Análise Espectral Raman , Bacteriemia/microbiologia , Antibacterianos/farmacologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Humanos , Técnicas Bacteriológicas/métodos , Hemocultura
6.
Nucleic Acids Res ; 51(16): 8402-8412, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37526274

RESUMO

Genomic islands (GIs) play a crucial role in the spread of antibiotic resistance, virulence factors and antiviral defense systems in a broad range of bacterial species. However, the characterization and classification of GIs are challenging due to their relatively small size and considerable genetic diversity. Predicting their intercellular mobility is of utmost importance in the context of the emerging crisis of multidrug resistance. Here, we propose a large-scale classification method to categorize GIs according to their mobility profile and, subsequently, analyze their gene cargo. We based our classification decision scheme on a collection of mobility protein motif definitions available in publicly accessible databases. Our results show that the size distribution of GI classes correlates with their respective structure and complexity. Self-transmissible GIs are usually the largest, except in Bacillota and Actinomycetota, accumulate antibiotic and phage resistance genes, and favour the use of a tyrosine recombinase to insert into a host's replicon. Non-mobilizable GIs tend to use a DDE transposase instead. Finally, although tRNA genes are more frequently targeted as insertion sites by GIs encoding a tyrosine recombinase, most GIs insert in a protein-encoding gene. This study is a stepping stone toward a better characterization of mobile GIs in bacterial genomes and their mechanism of mobility.


Assuntos
Bactérias , Farmacorresistência Bacteriana , Ilhas Genômicas , Bactérias/efeitos dos fármacos , Bactérias/genética , Genoma Bacteriano/genética , Ilhas Genômicas/genética , Recombinases/genética , Tirosina/genética
7.
Trop Biomed ; 40(2): 152-159, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37650400

RESUMO

Antibiotics which once a boon in medicine and saved millions of lives are now facing an ever-growing menace of antibacterial resistance, which desperately needs new antibacterial drugs which are innovative in chemistry and mode of action. For many years, the world has turned to natural plants with antibacterial properties to combat antibiotic resistance. On that basis, we aimed to identify plants with antibacterial and antibiotic potentiating properties. Seventeen different extracts of 3 plants namely Burkillanthus malaccensis, Diospyros hasseltii and Cleisthanthus bracteosus were tested against multi-drug resistant Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Methicillinresistant Staphylococcus aureus (MRSA) and methicillin-susceptible Staphylococcus aureus (MSSA). Antibacterial activity of hexane, methanol and chloroform extracts of bark, seed, fruit, flesh and leaves from these plants were tested using, disk diffusion assay, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Antibiotic potentiating capabilities were tested using time-kill assay. B. malaccensis fruit chloroform extract showed the biggest zone of inhibition against MRSA (13.00±0.0 mm) but C. bracteosus bark methanol extract showed the biggest inhibition zone against MSSA (15.33±0.6 mm). Interestingly, bark methanol extract of C. bracteosus was active against MRSA (8.7±0.6 mm), MSSA (7.7±0.6 mm) (Gram-positive) and A. baumannii (7.7±0.6 mm) (Gram-negative). Overall, the leaf methanol and bark methanol extract of C. bracteosus warrants further investigation such as compound isolation and mechanism of action for validating its therapeutic use as antibiotic potentiator importantly against MRSA and A. baumannii.


Assuntos
Antibacterianos , Bactérias , Extratos Vegetais , Humanos , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Clorofórmio/farmacologia , Diospyros/química , Metanol/farmacologia , Extratos Vegetais/farmacologia , Rutaceae/química , Phyllanthus/química
8.
J Microbiol ; 61(6): 641-648, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37306831

RESUMO

Lipolanthine is a subclass of lanthipeptide that has the modification of lipid moiety at the N-terminus. A cryptic biosynthetic gene cluster comprising four genes (sinA, sinKC, sinD, and sinE) involved in the biosynthesis of lipolanthine was identified in the genome of an actinobacterium Sinosporangium siamense. Heterologous coexpression of a precursor peptide coding gene sinA and lanthipeptide synthetase coding gene sinKC in the host Escherichia coli strain BL21(DE3) resulted in the synthesis of a new lanthipeptide, sinosporapeptin. It contained unusual amino acids, including one labionin and two dehydrobutyrine residues, as determined using NMR and MS analyses. Another coexpression experiment with two additional genes of decarboxylase (sinD) and N-acetyl transferase (sinE) resulted in the production of a lipolanthine-like modified sinosporapeptin.


Assuntos
Actinobacteria , Família Multigênica , Peptídeos , Família Multigênica/genética , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Actinobacteria/genética , Actinobacteria/metabolismo , Genes Bacterianos/genética , Escherichia coli/genética , Aminoácidos/química , Modelos Moleculares , Estrutura Terciária de Proteína , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Transcriptoma
9.
Int J Mol Sci ; 24(12)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37373146

RESUMO

The rising prevalence of antibiotic-resistance is currently a grave issue; hence, novel antimicrobial agents are being explored and developed to address infections resulting from multiple drug-resistant pathogens. Biogenic CuO, ZnO, and WO3 nanoparticles can be considered as such agents. Clinical isolates of E. coli, S. aureus, methicillin-resistant S. aureus (MRSA), and Candida albicans from oral and vaginal samples were treated with single and combination metal nanoparticles incubated under dark and light conditions to understand the synergistic effect of the nanoparticles and their photocatalytic antimicrobial activity. Biogenic CuO and ZnO nanoparticles exhibited significant antimicrobial effects under dark incubation which did not alter on photoactivation. However, photoactivated WO3 nanoparticles significantly reduced the number of viable cells by 75% for all the test organisms, thus proving to be a promising antimicrobial agent. Combinations of CuO, ZnO, and WO3 nanoparticles demonstrated synergistic action as a significant increase in their antimicrobial property (>90%) was observed compared to the action of single elemental nanoparticles. The mechanism of the antimicrobial action of metal nanoparticles both in combination and in isolation was assessed with respect to lipid peroxidation due to ROS (reactive oxygen species) generation by measuring malondialdehyde (MDA) production, and the damage to cell integrity using live/dead staining and quantitating with the use of flow cytometry and fluorescence microscopy.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Óxidos , Óxidos/farmacologia , Cobre/farmacologia , Óxido de Zinco/farmacologia , Tungstênio/farmacologia , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Candida albicans/efeitos dos fármacos
10.
Transl Vis Sci Technol ; 12(5): 16, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37184498

RESUMO

Purpose: Although a comprehensive knowledge of antibiotic/corticosteroid combinations is essential for the appropriate treatment of eye infections, the impact of their co-administration has not been well studied to date. A systematic pharmacodynamic/pharmacokinetic study to determine the effects of cotreatment with various antibiotics and corticosteroids was conducted. Methods: Four bacterial strains, seven antibiotics, and four corticosteroids were used in the analyses. Drug interactions were evaluated by considering antibacterial effects with a checkerboard assay and intracellular concentrations in human corneal epithelial cells. Results: The drug combinations that showed the most stable effects against Pseudomonas aeruginosa was levofloxacin-prednisolone. Stable combinations against the three types of Gram-positive bacteria were neomycin-prednisolone, ofloxacin-dexamethasone, ofloxacin-prednisolone, and polymyxin-dexamethasone. The cellular concentrations were changed for the gatifloxacin-fluorometholone, moxifloxacin-fluorometholone, tobramycin-dexamethasone, and tobramycin-prednisolone combinations. Conclusions: Loteprednol and fluorometholone reduced the antibacterial effects of all of the tested antibiotics in this study. Dexamethasone and prednisolone showed various effects in this regard, depending on the co-administered antibiotic. Prior knowledge of specific antibiotic/corticosteroid interactions provides valuable information to clinical practitioners by combining data on the antibacterial and intracellular uptake effects of their co-administration. Translational Relevance: When using antibiotics and corticosteroids, drug combinations can be selected by referring to the results of this study.


Assuntos
Corticosteroides , Antibacterianos , Bactérias , Doenças da Córnea , Interações Medicamentosas , Infecções Oculares Bacterianas , Humanos , Corticosteroides/farmacocinética , Corticosteroides/farmacologia , Corticosteroides/uso terapêutico , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Infecções Oculares Bacterianas/tratamento farmacológico , Infecções Oculares Bacterianas/microbiologia , Epitélio Corneano/metabolismo , Linhagem Celular , Quimioterapia Combinada/efeitos adversos , Quimioterapia Combinada/normas , Doenças da Córnea/tratamento farmacológico , Doenças da Córnea/microbiologia
11.
Drug Res (Stuttg) ; 73(7): 412-416, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37236230

RESUMO

Selective inhibitors of sodium glucose co-transporter-2 (SGLT2) suppress renal glucose reabsorption and promote urinary glucose excretion, thereby lowering blood glucose. SGLT2 inhibitors have been reported to reduce body weight. However, the mechanism underlying the reduction in the body weight induced by SGLT2 inhibitor treatment remains to be elucidated. In this study, we investigated the effects of SGLT2 inhibitors on the intestinal bacterial flora. A total of 36 Japanese patients with type 2 diabetes mellitus received a SGLT2 inhibitor (luseogliflozin or dapagliflozin) for 3 months, and the prevalences of balance-regulating bacteria and balance-disturbing bacteria in the feces of the patients before and after SGLT2 inhibitor treatment were determined. SGLT2 inhibitor treatment was associated with a significant increase of the overall prevalence of the 12 types of balance-regulating bacteria. In addition, significant increases in the prevalences of the short-chain fatty acid (SCFAs)-producing bacteria among the balance-regulating bacteria were also observed. Individual analyses of the balance-regulating bacteria revealed that the SGLT2 inhibitor treatment was associated with a significant increase in the prevalence of Ruminococci, which are balance-regulating bacteria classified as SCFAs-producing bacteria. However, SGLT2 inhibitor had no effect on the balance-disturbing bacteria. These results suggested that SGLT2 inhibitor treatment was associated with an overall increase in the prevalence of balance-regulating bacteria. Among the balance-regulating bacteria, the prevalences of SCFAs-producing bacteria increased. SCFAs have been reported to prevent obesity. The results of the present study suggest that SGLT2 inhibitors might induce body weight reduction via their actions on the intestinal bacterial flora.


Assuntos
Bactérias , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hipoglicemiantes , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Peso Corporal , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/microbiologia , População do Leste Asiático , Glucose , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Transportador 2 de Glucose-Sódio/farmacologia , Transportador 2 de Glucose-Sódio/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia
12.
Fitoterapia ; 168: 105546, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37217021

RESUMO

Phoma fungi are known to produce a diverse range of natural products which possess various biological activities such as antifungal, antimicrobial, insecticidal, cytotoxic, and immunomodulatory effects. In our present study, we have isolated two novel polyketides (1 and 3), one new sesquiterpenoid (2), and eight known compounds (4-11) from the culture of Phoma sp. 3A00413, a deep-sea sulphide-derived fungus. The structures of compounds 1-3 were elucidated using NMR, MS, NMR calculation, and ECD calculation. In vitro antibacterial activities of all the isolated compounds were evaluated against Escherichia coli, Vibrio parahaemolyticus vp-HL, Vibrio parahaemolyticus, Staphylococcus aureus, Vibrio vulnificus, and Salmonella enteritidis. Compounds 1, 7, and 8 exhibited weak inhibition against Staphylococcus aureus growth, while compounds 3 and 7 showed weak inhibition against Vibrio vulnificus growth. Importantly, compound 3 demonstrated exceptional potency against Vibrio parahaemolyticus, with a minimum inhibitory concentration (MIC) of 3.1 µM.


Assuntos
Phoma , Policetídeos , Sesquiterpenos , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Phoma/química , Policetídeos/química , Policetídeos/isolamento & purificação , Policetídeos/farmacologia , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia , Espectroscopia de Ressonância Magnética , Bactérias/efeitos dos fármacos
13.
J Biol Chem ; 299(7): 104845, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37209826

RESUMO

The increase in antibiotic resistance calls for accelerated molecular engineering strategies to diversify natural products for drug discovery. The incorporation of non-canonical amino acids (ncAAs) is an elegant strategy for this purpose, offering a diverse pool of building blocks to introduce desired properties into antimicrobial lanthipeptides. We here report an expression system using Lactococcus lactis as a host for non-canonical amino acid incorporation with high efficiency and yield. We show that incorporating the more hydrophobic analog ethionine (instead of methionine) into nisin improves its bioactivity against several Gram-positive strains we tested. New-to-nature variants were further created by click chemistry. By azidohomoalanine (Aha) incorporation and subsequent click chemistry, we obtained lipidated variants at different positions in nisin or in truncated nisin variants. Some of them show improved bioactivity and specificity against several pathogenic bacterial strains. These results highlight the ability of this methodology for lanthipeptide multi-site lipidation, to create new-to-nature antimicrobial products with diverse features, and extend the toolbox for (lanthi)peptide drug improvement and discovery.


Assuntos
Química Click , Lactococcus lactis , Metionina , Nisina , Aminoácidos/metabolismo , Peptídeos Antimicrobianos/síntese química , Peptídeos Antimicrobianos/farmacologia , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Metionina/química , Metionina/metabolismo , Nisina/síntese química , Nisina/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos
14.
ACS Appl Mater Interfaces ; 15(18): 21781-21791, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37115169

RESUMO

Antimicrobial polymers exhibit great potential for treating drug-resistant bacteria; however, designing antimicrobial polymers that can selectively kill bacteria and cause relatively low toxicity to normal tissues/cells remains a key challenge. Here, we report a pH window for ionizable polymers that exhibit high selectivity toward bacteria. Ionizable polymer PC6A showed the greatest selectivity (131.6) at pH 7.4, exhibiting low hemolytic activity and high antimicrobial activity against bacteria, whereas a very high or low protonation degree (PD) produced relatively low selectivity (≤35.6). Bactericidal mechanism of PC6A primarily comprised membrane lysis without inducing drug resistance even after consecutive incubation for 32 passages. Furthermore, PC6A demonstrated synergistic effects in combination with antibiotics at pH 7.4. Hence, this study provides a strategy for designing selective antimicrobial polymers.


Assuntos
Antibacterianos , Concentração de Íons de Hidrogênio , Antibacterianos/química , Antibacterianos/farmacologia , Polímeros/química , Testes de Sensibilidade Microbiana , Bactérias/efeitos dos fármacos
15.
PLoS Genet ; 19(4): e1010725, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37104544

RESUMO

The necrotrophic plant pathogenic bacterium Dickeya solani emerged in the potato agrosystem in Europe. All isolated strains of D. solani contain several large polyketide synthase/non-ribosomal peptide synthetase (PKS/NRPS) gene clusters. Analogy with genes described in other bacteria suggests that the clusters ooc and zms are involved in the production of secondary metabolites of the oocydin and zeamine families, respectively. A third cluster named sol was recently shown to produce an antifungal molecule. In this study, we constructed mutants impaired in each of the three secondary metabolite clusters sol, ooc, and zms to compare first the phenotype of the D. solani wild-type strain D s0432-1 with its associated mutants. We demonstrated the antimicrobial functions of these three PKS/NRPS clusters against bacteria, yeasts or fungi. The cluster sol, conserved in several other Dickeya species, produces a secondary metabolite inhibiting yeasts. Phenotyping and comparative genomics of different D. solani wild-type isolates revealed that the small regulatory RNA ArcZ plays a major role in the control of the clusters sol and zms. A single-point mutation, conserved in some Dickeya wild-type strains, including the D. solani type strain IPO 2222, impairs the ArcZ function by affecting its processing into an active form.


Assuntos
Peptídeos Antimicrobianos , Família Multigênica , Mutação Puntual , Família Multigênica/genética , Genômica , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Policetídeo Sintases/genética , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Ascomicetos/efeitos dos fármacos , Dickeya/genética , Dickeya/metabolismo , Regulação Bacteriana da Expressão Gênica/genética
16.
FEMS Microbiol Ecol ; 99(5)2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36977576

RESUMO

There is increasing evidence that microbes can help ameliorate plant growth under environmental stress. Still, it is largely unknown what microbes and potential functions are involved in sustaining turfgrass, the major component of urban/suburban landscapes, under drought. We examined microbial responses to water deficits in bulk soil, rhizosphere, and root endosphere of bermudagrass by applying evapotranspiration (ET)-based dynamic irrigation twice per week during the growing season to create six treatments (0%, 40%, 60%, 80%, 100%, and 120% ET) and respective drought-stressed soil conditions. Bacterial and fungal communities were analyzed via marker gene amplicon sequencing and thereafter drought-reshaped potential functions of the bacterial community were projected. Slight yet significant microbial responses to irrigation treatments were observed in all three microhabitats. The root endophytic bacterial community was most responsive to water stress. No-irrigation primarily increased the relative abundance of root endophytic Actinobacteria, especially the genus Streptomyces. Irrigation at ≤40% ET increased the relative abundances of PICRUSt2-predicted functional genes encoding 1-aminocyclopropane-1-carboxylic acid deaminase, superoxide dismutase, and chitinase in root endosphere. Our data suggest that the root endophytic Actinobacteria are likely the key players to improve bermudagrass fitness under drought by modulating phytohormone ethylene production, scavenging reactive oxygen species, or ameliorating nutrient acquisition.


Assuntos
Actinobacteria , Cynodon , Desidratação , Microbiota , Raízes de Plantas , Actinobacteria/efeitos dos fármacos , Actinobacteria/genética , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Cynodon/microbiologia , Microbiota/efeitos dos fármacos , Microbiota/genética , Raízes de Plantas/microbiologia , Rizosfera , Solo/química , Microbiologia do Solo , Água/farmacologia , Biodiversidade , Genes Bacterianos/genética
17.
Aquat Toxicol ; 257: 106459, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36857871

RESUMO

With large amounts of cephalosporin end up in natural ecosystems, water has been acknowledged as the large reservoir of ß-lactam resistance over the past decades. However, there is still insufficient knowledge available on the function of the living organisms to the transmission of antibiotic resistance. For this reason, in this study, using adult zebrafish (Danio rerio) as animal model, exposing them to environmentally relevant dose of cefotaxime for 150 days, we asked whether cefotaxime contamination accelerated ß-lactam resistance in gut microbiota as well as its potential transmission. Results showed that some of ß-lactam resistance genes (ßRGs) were intrinsic embedded in intestinal microbiome of zebrafish even without antibiotic stressor. Across cefotaxime treatment, the abundance of most ßRGs in fish gut microbiome decreased apparently in the short term firstly, and then increased with the prolonged exposure, forming distinctly divergent ßRG profiles with antibiotic-untreated zebrafish. Meanwhile, with the rising concentration of cefotaxime, the range of ßRGs' host-taxa expanded and the co-occurrence relationships of mobile genetics elements (MGEs) with ßRGs intensified, indicating the enhancement of ßRGs' mobility in gut microbiome when the fish suffered from cefotaxime contamination. Furthermore, the path of partial least squares path modeling (PLS-PM) gave an integral assessment on the specific causality of cefotaxime treatment to ßRG profiles, showing that cefotaxime-mediated ßRGs variation was most ascribed to the alteration of MGEs under cefotaxime stress, followed by bacterial community, functioning both direct influence as ßRG-hosts and indirect effects via affecting MGEs. Finally, pathogenic bacteria Aeromonas was identified as the critical host for multiple ßRGs in fish guts, and its ß-lactam resistance increased over the duration time of cefotaxime exposure, suggesting the potential spreading risks for the antibiotic-resistant pathogens from environmental ecosystems to clinic. Overall, our finding emphasized cefotaxime contamination in aquatic surroundings could enhance the ß-lactam resistance and its transmission mobility in fish bodies.


Assuntos
Bactérias , Cefotaxima , Microbioma Gastrointestinal , Resistência beta-Lactâmica , Cefotaxima/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Peixe-Zebra/microbiologia , Poluentes Químicos da Água/toxicidade , Resistência beta-Lactâmica/efeitos dos fármacos , Resistência beta-Lactâmica/genética , Sequências Repetitivas Dispersas/genética , Bactérias/efeitos dos fármacos , Bactérias/genética , Animais , Aeromonas/efeitos dos fármacos , Aeromonas/genética
18.
Trends Microbiol ; 31(5): 432-434, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35140037

RESUMO

Integrons are bacterial genetic elements notorious for their role in spreading antibiotic resistance in clinical settings. In the natural environment, integrons present a wide and hidden diversity, raising questions as to their broader role in bacterial adaptation. From the One Health perspective, they must be considered a threatening pool of resistance determinants.


Assuntos
Bactérias , Farmacorresistência Bacteriana , Integrons , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Farmacorresistência Bacteriana/genética , Integrons/genética
19.
Aust Endod J ; 49(2): 386-395, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36054305

RESUMO

The aim of this study was to assess the prevalence and proportions of antimicrobial-resistant species in patients with endodontic infections. A systematic scoping review of scientific evidence was accomplished involving different databases. Nine investigations were selected including 651 patients. Enterococcus faecalis was resistant to tetracycline (30%-70%), clindamycin (100%), erythromycin (10%-20%), ampicillin (9%) and azithromycin (60%). On the contrary, Prevotella spp., Fusobacterium spp., Peptostreptococcus spp. and Streptococcus spp. were resistant to penicillin, tetracycline, doxycycline, ciprofloxacin, amoxicillin, erythromycin, metronidazole and clindamycin in different proportions. Fusobacterium nucleatum showed high resistance to amoxicillin, amoxicillin plus clavulanate and erythromycin. Prevotella oralis presented a predisposition to augment its resistance to clindamycin over time. Tanerella forsythia exhibited resistance to ciprofloxacin and rifampicin. Lactococcus lactis presented robust resistance to cephalosporins, metronidazole, penicillin, amoxicillin and amoxicillin-clavulanic acid. It was observed high levels of resistance to antimicrobials that have been utilised in the local and systemic treatment of oral cavity infections.


Assuntos
Antibacterianos , Bactérias , Resistência Microbiana a Medicamentos , Periodontite Periapical , Humanos , Periodontite Periapical/tratamento farmacológico , Periodontite Periapical/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Estudos Observacionais como Assunto , Bactérias/efeitos dos fármacos
20.
Macromol Biosci ; 23(3): e2200459, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36575859

RESUMO

Oxidized bacterial nanocellulose (OBC) is reported to prevent microbial growth, but its antibacterial characteristics and mechanism are still unclear. Here, the antibacterial mechanism of OBC is explored by detecting and assessing the interaction of OBC with different carboxyl content on Staphylococcus aureus and Escherichia coli. The results show that OBC has strong antibacterial activity and antibiofilm activity against S. aureus and E. coli, which is positively correlated with the carboxyl content of OBC. After OBC treatment, the bacteria adhesion is inhibited and the cell membrane is destroyed leading to increased permeability. Further investigation reveals that the concentration of cyclic diguanosine monophosphate (c-di-GMP) that induced biofilm formation is significantly decreased to 1.81 pmol mg-1 after OBC treatment. In addition, OBC inactivates mature biofilms, with inactivation rates up to 79.3%. This study suggests that OBC has excellent antibacterial and antiadhesion properties, which can increase the cell membrane permeability and inhibit c-di-GMP formation. In addition, OBC also has a strong inactivation effect on mature biofilm, which can be used as an effective antibiofilm agent.


Assuntos
Antibacterianos , Bactérias , Nanoestruturas , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/citologia , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Citocinas/biossíntese , Escherichia coli/efeitos dos fármacos , Carne/microbiologia , Testes de Sensibilidade Microbiana , Nanoestruturas/química , Oxirredução , Staphylococcus aureus/efeitos dos fármacos , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...